Die Überlistung von Bilderkennungssystemen durch das Hinzufügen von "Rauschen" bezieht sich auf eine Technik, die in der Fachwelt als "Adversarial Attack" (angriffsbasierte Störung) bekannt ist. Hierbei werden Bilderkennungsalgorithmen, meist solche, die auf künstlicher Intelligenz (KI) und maschinellem Lernen basieren, gezielt durch speziell entwickelte Störungen getäuscht.
Ein Bilderkennungssystem, insbesondere eines, das auf tiefen neuronalen Netzen (Deep Neural Networks, DNNs) basiert, lernt Objekte anhand von Merkmalen und Mustern in Trainingsdaten zu erkennen. Diese Systeme sind sehr gut darin, komplexe Muster zu identifizieren und zu klassifizieren.
Bei einem Adversarial Attack werden kleine, aber gezielte Änderungen am Eingabebild vorgenommen. Diese Änderungen werden als "Adversarial Perturbations" (angriffsbasierte Störungen) bezeichnet. Sie sind oft so geringfügig, dass das menschliche Auge sie nicht wahrnehmen kann, aber sie sind ausreichend, um die internen Berechnungen des neuronalen Netzes erheblich zu stören.
Das Ziel dieser Störungen ist es, das neuronale Netz dazu zu bringen, ein falsches Ergebnis zu liefern, obwohl sich das Bild für einen Menschen nicht merklich verändert hat. Zum Beispiel könnte ein Bild einer Katze so manipuliert werden, dass das KI-System es fälschlicherweise als Hund klassifiziert.
Dies wird erreicht, indem die Gradienten des neuronalen Netzes analysiert werden. Der Gradient zeigt an, wie kleine Veränderungen in den Eingabedaten die Ausgabe des Netzes beeinflussen. Indem man diese Gradienten untersucht, kann man herausfinden, wie man das Bild ändern muss, um die Ausgabe des Netzes zu beeinflussen.
Adversarial Attacks sind nicht nur ein Beweis für die Anfälligkeit von KI-Systemen, sondern auch ein wichtiges Werkzeug für Forscher, um die Sicherheit und Robustheit dieser Systeme zu testen und zu verbessern. Durch das Verständnis, wie solche Angriffe funktionieren, können Entwickler bessere Abwehrmechanismen entwickeln, um ihre KI-Modelle widerstandsfähiger gegen solche Störungen zu machen.