Werbung
Nicht neu, aber erstmals im Einsatz zu sehen gab es den wohl kleinsten SoC der Welt. ARM stellte den Cortex M0 bereits im Herbst des vergangenen Jahres vor. Der Fokus liegt natürlich auf der Größe, bzw. einem möglichst kleinen Footprint für das Design von dazugehöriger Hardware. Nicht aus den Augen lassen will ARM aber auch die Leistungswerte, denn trotz eingeschränktem Anwendungsbereich und offensichtlich durch die Größe reduzierten Funktionen, soll die dazugehörigen Leistung stimmen.
Mit dem Cortex M0 zielt ARM auf Entwickler ab, die zuvor auf einen 8-Bit-Prozessor setzen mussten, um in der gewählten Größte das passende Produkt zu finden. Die Cortex-M0-Architektur rechnet aber sogar in 32 Bit und überspringt damit auch die alternativ angebotenen 16-Bit-Prozessoren. Die sonst üblichen Angaben zum Takt und Verbrauch macht ARM in anderer Art und Weise, da bei diesem Design immer eine genaue Abstimmung auf den gewünschten Einsatzbereich erfolgt. So werden keine genauen Angaben zum Takt gemacht. Vielmehr wird die Leistung mit 2,33 CoreMarks/MHz bzw. 0,87 bis 1,27 DMIPS/MHz gemacht. Der Verbrauch liegt bei 5,1 und 64,3 µW/MHz. Der Footprint, also die Fläche die auf dem PCB benötigt wird, beträgt zwischen 0,007 mm² und 0,109 mm².
Der Cortex M0 ist dabei nur die kleinste der variable einsetzbaren Möglichkeiten. Die Cortex-M0+-Variante verzichtet sogar auf die 32-Bit-Fähigkeit und soll noch kompakter sein. Auf bis zu sieben Stages lässt sich das Design aufbauen, einen Cortex M7 haben wir einmal auf Foto gebannt. Hier sind auch die in Treppen aufgebauten Stages zu erkennen Die ganz kleinen Varianten sind ohne Mikroskop gar nicht mehr als Prozessor zu erkennen und könnten als auch Staubkorn durchgehen.
Aufgrund der Größe sind den Prozessoren natürlich Grenzen gesetzt. So verfügt der eigentliche Prozessor nur über einige Schnittstellen, an die weitere Komponenten angebunden werden müssen. Ohnehin sind solche Prozessoren nur dazu vorgesehen kleine Datensätze zu empfangen, diese möglichst schnell zu verarbeiten, um sie dann ebenso schnell wieder auszugeben. Ein dediziertes Wakeup-Interface ist dabei die wichtigste Komponente, um den Prozessor nur im Bedarfsfall aufzuwecken. Ebenfalls vorhanden ist ein Interface zur Kommunikation mit der Außenwelt. Dazu müssen zusätzlicher Chips verbaut werden, die dann direkt angebunden werden können. Bluetooth LE, IEEE 802.15 (Wireless Personal Area Network oder WPAN) und Z-Wave können zur drahtlosen Kommunikation verwendet werden.
Die Einsatzmöglichkeiten für einen ARM Cortex M0 sind vielfältig. Selbst einfache Kabel moderner Übertragungstechniken verfügen inzwischen über eine Vielzahl von Chips zur Wandlung der Signale. Hier kann die kompakte Bauweise dazu beitragen, dass Steckverbinder immer dünner werden. The Internet of Things ist natürlich ebenfalls eine Spielwiese für solche kleine Prozessoren, die sich nahezu überall einbauen ließen.