Wie bereits im einleitenden Text erwähnt hat Futurmark den 3DMark06 an die Leistungsfähigkeit aktueller Grafikkarten angepasst. Dies wird deutlich, wenn man den Vorgänger 3DMark05 direkt mit dem 3DMark06 vergleicht:
Und so hat sich auch das Aussehen der bereits bekannten und angepassten Benchmarks verändert.
Vergleich ShaderModel 2.0 GT1: 3DMark05 link, 3DMark06 rechts:
Durch Klick auf das Bild gelangt man zu einer vergrößerten Ansicht
Durch Klick auf das Bild gelangt man zu einer vergrößerten Ansicht
Durch Klick auf das Bild gelangt man zu einer vergrößerten Ansicht
Vergleich ShaderModel 2.0 GT2: 3DMark05 link, 3DMark06 rechts:
Durch Klick auf das Bild gelangt man zu einer vergrößerten Ansicht
Durch Klick auf das Bild gelangt man zu einer vergrößerten Ansicht
Durch Klick auf das Bild gelangt man zu einer vergrößerten Ansicht
Vergleich HDR/ShaderModel 3.0 GT1: 3DMark05 link, 3DMark06 rechts:
Durch Klick auf das Bild gelangt man zu einer vergrößerten Ansicht
Durch Klick auf das Bild gelangt man zu einer vergrößerten Ansicht
Durch Klick auf das Bild gelangt man zu einer vergrößerten Ansicht
Werfen wir einen Blick auf die im Futuremark 3DMark06 ausgeführten Benchmarks:
ShaderModel 2.0 Graphics Test 1: Return to Proxycon
Game Test 1 from 3DMark05 is being re-used in 3DMark06, but will be using the updated engine, improved artwork, more shadow casting objects, more lights and using the new shadow-technique. This test will still only require SM2.0. In this test a crew of space pirates attack and board a transport vessel with valuable cargo. There will be a ‘full story’ in the demo and a shorter version as the graphics test. Please watch the 3DMark06 demo for the whole story.
It should be obvious that this test reflects the 3D performance of shooter games, which many times take place indoors. In this test, the indoor areas are a bit larger, as opposed to the narrow corridors that are typical for first and third person shooters. The larger area allows a larger number of characters fighting in the same room, which is desirable especially in multiplayer games.
Materials. Most surfaces of the space ship interior are of a material doing a Blinn-Phong reflection. The exponent calculations are implemented to use lookups rather than calculating them mathematically.
Lighting. The numerous lights in the ceiling of the hangar are approximated with a directional lights from behind and above. Only one of the directional lights cast CSM. Additionally there are a number of point lights filling the total lighting nicely, and most of them cast shadows. The corridor has point lights throwing shadows, using a 1024x1024x6 cube depth map/hardware shadow map each, and some are masked and animated such as the rotating warning lights at the doorway, and at the end of the corridor. There are all in all 26 light sources in the graphics test level, two directional, 12 small non-overlapping shadowmapped spot lights and the rest are point lights.
Durch Klick auf das Bild gelangt man zu einer vergrößerten Ansicht
Durch Klick auf das Bild gelangt man zu einer vergrößerten Ansicht
Durch Klick auf das Bild gelangt man zu einer vergrößerten Ansicht
ShaderModel 2.0 Graphics Test 2: Firefly Forest
Again, 3DMark06 re-uses the test from 3DMark05, but using the updated engine, improved artwork and new shadow technique. This test will still only require SM2.0. The test has also another “firefly” flying in the forest, in order to create more graphics load. In this test a forest is inhabited by magic fireflies that fly around at night. The moon is nearly full, illuminating the forest with a bluish faint light. The magic fireflies have flickering bright green lights that playfully move around the forest. The graphics test only shows a part of this scene. Please watch the demo for the whole story.
This scene is a nice example of a smaller scale outdoor scene with rich vegetation. Immediate visibility is limited, and there is a skybox surrounding the whole scene. There are a large number of trees, all swaying in the light breeze, the branches swinging separately, and there is dense vegetation on the ground. The vegetation on the ground is actually one of the key interests in this test. It is dynamically distributed where needed, according to the camera movements. Its level of detail is also dynamically altered depending on the distance to the camera. The other key interest in this scene is the amazing lighting and dynamic shadow system. This scene really is ideal for showing the benefits of CSM and high resolution shadow mapped point lights.
Materials. The ground material is similar to the metals in graphics test one, but with added diffuse, diffuse detail, normal and normal detail maps. The rock surfaces also have a specular map. The tree branches are also a modified metal material without a specular map and with a diffuse cube map and no bump mapping. The sky is created using a procedural light scattering shader.
Lighting. The moonlight is directional, generating CSM. The illuminating fireflies are shadow mapped point lights with a cubemap mask. The illuminating fireflies are masked point lights, throwing shadows using a 1024x1024x6 cube depth map/hardware shadow maps.
Durch Klick auf das Bild gelangt man zu einer vergrößerten Ansicht
Durch Klick auf das Bild gelangt man zu einer vergrößerten Ansicht
Durch Klick auf das Bild gelangt man zu einer vergrößerten Ansicht
HDR/ShaderModel 3.0 Graphics Test 1: Canyon Flight
Canyon Flight from 3DMark05 has been updated with the improved engine, HDR rendering, use of SM3.0, a new shadow-technique and a completely new shadow filtering technique. A lot of the artwork has also been improved. The graphics test only shows a part of this adventure. Please watch the demo for the whole story.
This test gives an example of a large scale outdoor scene with HDR rendering, smooth shadows and complex SM3.0 shaders. The scene is very complex with large areas of water reflecting the high canyon walls. The HDR rendering is one of the key points of interest in this scene, proving the increasing importance of floating point rendering to achieve realistic scenes. The water in this scene not only features realistic looking HDR reflections and HDR refractions, but it also has a depth fog, making the sea monster swimming under the airship actually look deep down in the water. The surface of the water is distorted using 2 scrolling normal maps and four Gerstner wave functions. This scene also uses a complex heterogeneous fog to make the whole canyon appear humid. The air in this scene also uses the same atmospheric light scattering algorithm as in 3DMark05 making distant cliffs of the canyon really look far away. The sky uses a more complex atmospheric light scattering algorithm than in 3DMark05, with cloud blending.
Materials. The ship and the crewmen are shaded using Strauss shading model, making them look more realistic than in 3DMark05. The canyon material has three color maps, three normal maps and Lambertian diffuse shading. The water is a further developed version of the water shader in 3DMark05 doing 2 scrolling normal maps and four Gerstner wave functions and full HDR reflection and refraction. There is also a depth fog for making objects deeper look more blurred and darker. A R32F depth map is used for the depth fog.
Lighting. Since it is a sunny day, there is only one single directional light source - the sun. This scene is very challenging for dynamic shadows, because of the large area and the round shapes of the canyon walls but thanks to the CSM technique this is now possible.
Durch Klick auf das Bild gelangt man zu einer vergrößerten Ansicht
Durch Klick auf das Bild gelangt man zu einer vergrößerten Ansicht
Durch Klick auf das Bild gelangt man zu einer vergrößerten Ansicht
HDR/ShaderModel 3.0 Graphics Test 2: Deep Freeze
Deep Freeze is a completely new graphics test, introducing an Antarctic research base. The mood in this test is very movie-like, and has a pinch of horror in it. The graphics test only shows a part of this wonderful scene, so please run the demo for the whole story.
This test is a good showcase for using HDR effects in vast landscapes, and stunning dynamic long soft shadows for daytime -> night-time scenarios. As the sun goes down, the shadows increase in length and really show off the robustness of CSM. The snow uses Blinn-Phong shading model, 2 normal maps and 1 color map. The metallic and other surfaces use Strauss shading model. This test also uses the heterogeneous fog, along with heavy use of particles, to create a nice snow-storm effect. The snow also uses the subsurface scattering effect.
Materials. The snow surface in the graphics test uses the Blinn-Phong shading model, 2 normal maps and 1 color map as well as a custom approximation of sub-surface light scattering. The sky uses a procedural atmospheric light scattering. All other materials use the Strauss shading model, which makes them even more realistic.
Lighting. Since this test is also an outdoor scene, there is only one single directional light source - the sun. This scene is again very challenging for dynamic shadows, but thanks to the CSM technique this is now possible. The lighting and shadows all are dynamic, and they really show off as the sun goes down and the length of the shadows increases. The change in ambient lighting when the sun is setting, is achieved by blending two pairs of cubemaps - one for diffuse, and another for specular light. In this scene the HDR values are hovering around 11.000, which would not be feasible without floating point rendering which in combination with the need for precision in the lower brightness range wouldn’t be feasible without floating point.
Durch Klick auf das Bild gelangt man zu einer vergrößerten Ansicht
Durch Klick auf das Bild gelangt man zu einer vergrößerten Ansicht
Durch Klick auf das Bild gelangt man zu einer vergrößerten Ansicht
CPU Test 1 & 2: Red Valley
Die beiden CPU Tests unterstützen auch die AGEIA PhysX Engine und werden daher vom Einsatz einer speziellen Zusatzkarte profitieren.
The 3DMark06 CPU tests consist of a game scene with a maze of canyons, and 87 fast-moving game units ("bots", speeder bikes and hovering tanks). The speeders attempt to navigate to a goal position at a castle at the other end of the canyon system, all the while avoiding the defending tanks, and collisions with other speeders. The tanks attempt to hunt down the speeders, and shoot them.
The game scene yields three types of load in the CPU tests: game logic, physics and path finding AI. The game logic, including the graphics engine operation, runs in a single main thread that also drives the other two tasks. The physics simulation runs in a single separate thread, and is synched with the main thread at each physics step. The path finding AI runs in a number of worker threads (the number of threads is scaled with available processors), and is synched with the main thread at set intervals, generally some multiple of the physics step interval.
The CPU tests are run in fixed frame rate (2fps) to make a more equal CPU load for all systems. The resolution is locked to 640x480 and the tests use no dynamic shadows to decrease the graphics performance influence on the result.
The physics load consists of simulating the game world with its 87 units and their rigid bodies, at 20 ms physics step. Some physics operations like traces into collision meshes, and some overhead, is also included in the main thread load. The path finding AI load consists of unit path requests in a dynamic path finding grid, where each moving unit also represents a moving obstacle of certain radius on the grid. The resulting paths are synched back to the units at intervals ranging from 200 ms to 600 ms. The complexity of individual path request fulfilments varies greatly, as we use a dynamic re-planning algorithm that is often able to re-use state from previous searches. The length of the requested paths and the grid obstacle configuration also contribute to the path finding variance.
Durch Klick auf das Bild gelangt man zu einer vergrößerten Ansicht
Neben den hier detailliert erleuterten Tests führt der Futuremark 3DMark06 auch noch weiterführende Tests durch:
Neu sind einige Tools, die neben der eigentlichen 3D Performance auch die Bildqualität direkt Vergleichen lassen. Mit Hilfe des "Image Quality Tool" lässt sich zum Beispiel ein bestimmter Frame eines 3D Tests rendern und dann mit anderen, auf gleiche Art und Weise gerenderten Frames, auf verschiedenen Systemen vergleichen. Das "Texture Filtering and Anti-Aliasing Tool" erleichtert die Beurteilung der Filter und Anti-Aliasing Optionen verschiedener Grafikkarten. Mit dem "Graph Benchmark Mode" lässt sich ein Benchmarksdurchlauf grafisch Aufarbeiten und verbessert darstellen.
Am Ende eines jeden kompletten Benchmarkdurchlaufs, werden dann Ergebnisse für die ShaderModel 2.0, HDR/ShaderModel 3.0 und reine Prozessorleistung ausgegeben. Diese berechnen sich durch eine bestimmte Formel der Form:
SM2.0 Score = 120 x 0.5 x (SM2 GT1 fps + SM2 GT2 fps)
HDR/SM3.0 Score = 100 x 0.5 x (SM3 GT1 fps + SM3 GT2 fps)
CPU Score = 2500 x Sqrt (CPU1 fps x CPU2 fps)
3DMark Score = 2.5 x 1.0/ ((1.7/GS + 0.3/CPU Score)/2)
Auch eine Art Gimmick ist im Futuremark 3DMark06 zu finden. War im 3DMark2001 noch ein Mini-Game enthalten, suchte man dies vergebens in den darauf folgenden Versionen. Nun aber hat sich Futuremark besonnen und ein Mini-Game in seinen Benchmark eingebaut. Dieses basiert auf dem CPU-Test und muss daher auf grafische Besonderheiten verzichten. Dafür gestaltet sich die Bedienung sehr einfach:
W: Forward Thrust
S: Reverse Thrust
A: Strafe Left
D: Strafe Right
Mouse Move: Aim Turret
Left Mouse Button: Fire
Right Mouse Button: Toggle Turret Elevation
Space: Pause / Resume
ESC: Abort game
Durch Klick auf das Bild gelangt man zu einer vergrößerten Ansicht
Zuletzt noch ein paar Benchmarkwerte mit von uns zusammengestellten Testsystemen:
AMD Opteron 150 @ 2.8 GHz und ATI Radeon X1800 XT CF 5831
AMD Opteron 150 @ 2.8 GHz und ATI Radeon X1800 XT 3812
AMD Opteron 144 @ 1.8 GHz und NVIDIA GeForce 7800 GT 3502
AMD Opteron 150 @ 2.8 GHz und 2x NVIDIA GeForce 6600 GT 2618
AMD Athlon 64 X2 3800+ und 2x NVIDIA GeForce 6600 GT 2597