@elcrack0r: Wenn es etwas in der Art wäre, dann keine Comedy, sondern Kabarett
.
Aber auch wenn es dich zum lachen anregt, ist es leider überhaupt nicht lustig und damit auch kein Kabarett, sondern lediglich eine Beschreibung meiner Sichtweise auf den sog. "Fortschritt" und damit auch auf Leute wie dich, die in Sachen Fortschrittsgläubigkeit offenbar den Schuss nicht gehört haben. Da du in dieser Sichtweise sicher nicht mit mir übereinstimmst, sei dir das unbenommen, aber behellige mich bitte nicht weiter mit deiner Dünnbrettbohrerei, sondern argumentiere entweder vernünftig oder lass es bleiben und zieh dich wieder in deine Fortschrittsphantasienwelt zurück.
-> btt:
Es wäre u. A. interessant zu erfahren, wie die folgende Aussage zu interpertieren ist:
"Tachyum’s architecture overcomes the limitations of semiconductor device physics, which were thought to be insolvable. Tachyum in essence solved the performance problem of connecting very fast transistors with very slow wires – a standard processor design that has stifled semiconductor innovation for years, and stymied Silicon Valley engineers, even though nanometer-sized transistors in use today are far faster than in the past."
Dies wäre, wenn die Meldung mehr als reines Marketing sein soll, der springende Punkt, an dem evtl. tatsächlich eine gewisse Weiterentwicklung stattgefunden haben könnte. Leider bleibt man aber derart schwammig, dass man es eigentlich nur als Werbegrütze verstehen kann.
Copper-Interconnects wurden ja schon vor vielen vielen Jahren in der Chipfertigung eingeführt und auch stetig verbessert. Was bei hohen Frequenzen bzw. Schaltgeschwindigkeiten aber tatsächlich nach wie vor eine gewisse Beschränkung der Signalgeschwindigkeit in den Leiterbahnen darstellt, ist der Verkürzungsfaktor der die Signallaufzeit beschreibt. Er wird bei metallischen Leitern durch der Kehrwert aus der die Wurzel aus effektiver Permitivitätszahl multipliziert mit der Permeabilitätszahl des Ausbreitungsmediums (bei Kupfer ≈1) beschreiben. Man kann ihn auch als Kehrwert des komplexen Brechungsindex sehen. Bei hohen Frequenzen (also schnell schaltenden Transistoren) hat man hier also Stellschrauben beim Material der Interconnects über µ
r und die dielektrischen Eigenschaften (ε
r, btw. komplex: ε
1 + iε
2), aber auch bei deren Geometrie. Meines Wissens wurden da schon sehr viel ausprobiert, aber die Verbesserungen waren bislang nicht so dramatisch. Grundlegend wäre das dann der bekannten Entwicklung in Richtung Ultra-Low-K-Dielektrika zuzuordnen ("Low-K" weil die Amis die Permittivität mit κ und nicht mit ε bezeichnen wie bei uns).
Mal angenommen es geht nicht nur um´s reine Säbelrasseln, könnte denen hier aber möglicherweise tatsächlich ein kleiner Durchbruch in Sachen Ultra-Low-K gelungen sein, oder es wurde tatsächlich ein workaround entwickelt, um diesen Flaschenhals bei hohen Frequenzen anders zu umgehen. Letzteres wäre natürlich besonders interessant.
Das wäre dann auch etwas, was u. U. nicht nur für spezialisierte Chips Verbesserungen in Punkto Taktfrequenzen mit sich bringen könnte - sofern es nicht originär vom speziellen Design dieses ASICs abhängt und daher keine technische Umsetzung in komplexeren Chipdesigns erlaubt.
Mal rein spekulativ meinerseits:
Mit der Lichtgeschwindigkeit des Vakkums oder eines optischen Trägermediums, also rein mit optischer Signalübertragung, wird es nicht gehen, denn es muss ja Ladung transportiert werden. Da wir aber langsam in Größenbereiche kommen in denen Quantenffekte eine Rolle zu spielen beginnen, nutzt man vllt. sehr dünne Barrieren statt Leiterbahnen und erzeugt damit Tunnelströme, wie man sie beim Rastertunnelmikroskop misst, zum schalten. Das geht afaik instantan und würde damit des Signallaufzeitproblem bei hohen Frequenzen tatsächlich umgehen. Ob das zum direkten Schalten von Transistoren reicht weiß ich allerdings nicht. In dem Fall müssten dann aber auch rein geometrisch die Leiterbahnen eigentlich nicht mehr existent sein bzw. auf ein absolutes Minimum reduziert sein, was für eine andere als eine die üblichen, vorwiegend planaren Strukturen sprechen würde. Was ich mir daher nicht so recht vorstellen kann, sind Struktur und Fertigung eines solchen Schaltwerks. Möglicherweise ist das aber der Grund warum, man da mit einem ASIC für künstliche neuronale Netze gute Karten hat, weil die vermutlich eine komplett andere Struktur als normale Chips haben dürften, da ja alle künstlichen Synapsen ebenfalls möglichst direkt miteinander verbunden sein müssen.
Vielleicht ist es aber auch was ganz anderes, oder nur ein kleiner Weiterentwicklungssprung nach klassischer Manier. Rein von der Machart der Meldung spricht aber ohnehin das meiste für eine klassische Presse-Ente mit nichts dahinter außer lautem Geklapper.