Aber bei 50 nm "Spurrillen" muss jeder Platter vielleicht individuell nach einem eigenen individuellen "Lageplan" beschrieben werden.
Ja vermutlich, aber die Ausleger haben ja Dual-Strange Actuatoren, bzw. neuerdings sogar Tipple-Stange, siehe
Post #14 und damit kann man die Köpfe an jedem Arm feinjustieren. Es sollte also möglich sein, dass die Köpfe auf der Ober- und Unterseite eines Platter zeitgleich ihre Spur jeweils exakt treffen.
Naja, die Spurrillen sind ja nicht da wie auf einer Vinyl, sondern die werden doch durch den Lesekopf erzeugt, meine ich?
Der Lesekopf erzeugt gar nichts, der liest nur. Wie man heute die "Fahrbahnmarkierung" macht um zu erkennen, ob die Köpfe in ihrer Spur bleiben, kann ich Dir nicht sagen, da dies ja einen großen Einfluss auf die Datendichte hat. Früher gab es da magnetische Markierungen, aber dies würde ja mit SMR nicht funktionieren, da sich da die Spuren überlappen und ich vermuten, dass sie alleine auf die Headerdaten der Sektoren setzen um zu wissen das sie noch in der richtigen Spur sind und danach auf die Sensoren für Bewegungen, bis sie dann den Header des nächsten Sektors gefunden haben. Dabei kann man dann beim Lesen mit Hilfe der Signalstärke feinjustieren, denn diese dürfte ja nachlassen, wenn man anfängt die Spur zu verlassen.
Das dürfte also ein Thema sein, an dem die Hersteller intensiv arbeiten und WD schreibt ja auch über seine OptiNAND Technologie:
Da müssen also irgendwelche Informationen drin stehen, die helfen die Spuren enger zusammen zu packen, aber was dies genau ist und wie sie genau die Positionen der Spuren bestimmen und sicherstellen, dass die Köpfe diese nicht verlassen, wird WD wohl kaum verraten.
Aber so wie bei SSDs/HDDs auch, ist die simpler aussehende Technik Gegenüber der "rocket science" am Ende unbestreitbar im Vorteil.
Bei HDDs wie bei SSDs, dort sowohl im Controller aber vor allem im NAND, steckt schon eine ganze Menge High Tech drin und obwohl die Kosten pro TB für NAND schon massiv gefallen sind, haben HDDs hier immer noch die Nase vorne und werden dies auch noch lange haben, vermutlich sogar für immer. Denn während es bei NAND keine neuen Technologien mehr gibt, die man noch anwenden könnte, werden bei HDDs noch neue Technologien wie Heat Assisted Magnetic Recording (HAMR) und Bit Patterned Media (BPM) in Arbeit und wenn diese mal serienreif sein werden, sofern dies je gelingt, dann erwartet Seagate HDDs mit bis zu 120TB herstellen zu können. Die neuen Technologien kosten natürlich auch mehr, vor allem am Anfang, aber je mehr Verbreitung sie finden, umso geringer wird dann der Aufpreis gegenüber den Komponenten die man heute verwendet.
Bei NAND, welches den Löwenanteil der Kosten einer SSD ausmacht, kommen dagegen keine großen Sprünge mehr. Der erste war damals der Wechsel von SLC auf MLC, also 2 Bits pro Zelle zu schreiben, womit man im Prinzip 50% der Kosten eingespart hat. Aber schon der Wechsel auf TLC brauchte nur noch theoretische 3% Ersparnis und praktisch sind es weniger, da man mehr zusätzliche Zellen für die aufwendigere ECC braucht und mit QLC sind es gegenüber TLC nur noch maximal 25% Ersparnis. PLC, welches mal angedacht war, gibt es bis heute nicht, aber man würde auch nur noch maximal 20% einsparen können. Dafür hätte man eine weitere Verschlechterung der Schreibperformance und Zyklenfestigkeit in Kauf zu nehmen und die Zellen dürfen auch nicht zu klein werden, die war bei den planaren NAND mit weniger als 20nm schon ein massives Problem:
Der zweite große Schritt für NAND war dann das 3D NAND, womit man das Problem der geringen Zellgrößen und -abstände wieder kompensieren und zugleich die Datendichte steigern konnte. Allerdings erfordert jeder Layer zusätzliche Bearbeitungsschritte, die kosten Geld und mit jedem Schritt geht man auch noch das Risiko ein, durch einen Fehler den ganzen Wafer zu verlieren. Schon als die 3D NANDs aufgekommen sind, gab es daher Prognosen, dass wohl bei so 128 Layern das wirtschaftliche Limit für deren Fertigung liegen dürfte und dies scheint für alle anderen NAND Hersteller als Samsung schon viel früher eingetreten zu sein, Micron hat sogar schon
bei seinem 64 Layer NAND zwei Dies mit je 32 Layern übereinander gepackt,
Samsung selbst sein V6 3D NAND mit 136 Layern ohne Die Stacking gebracht, auch
die 176 Layer V7 NAND sollten ohne Stacking und wie es bei den V8 NANDs mit 236 Layern aussieht, weiß man nicht genau.
Aber so oder so, jeder zusätzliche Layer kostet Geld und wenn man zwei Dies übereinander packt, muss man zwei Dies fertigen und hat am Ende doch nur eines, welches man verkaufen kann. Da spart man sich also nur die Logik ein, die man halt nur einmal braucht, aber dies macht den Kohl nicht fett und daher kann man nur kleine Optimierungen machen um die Kosten zu senken. Man muss also lernen noch mehr native Layer in einem Dies zu erreichen ohne Fehler zu machen, kann die Zellen und ihre Abstände verringern, was dann aber wieder die Möglichkeiten mindert, irgendwann mehr Bits pro Zelle zu speichern und eben alles nur kleine Fische sind, aber eben keine großen Sprünge. Die Struktur einer NAND Zelle ist auch schon denkbar einfach, da kann man auch nichts mehr vereinfachen, eine vierte Dimension in die man noch ausweichen könnte, gibt es auch nicht, man sollte also nicht mehr mit massiven Kostensenkungen bei NAND rechnen. Preissenkungen bei SSDs kann es trotzdem immer mal geben, wie letztes Jahr, da es eben immer noch den Schweinezyklus gibt, aber damals haben die NAND Hersteller Milliardenverluste eingefahren, solche Preise waren eben nicht kostendeckend und sowas kann kein Dauerzustand sein, sonst gehen die Formen pleite.
Auch wenn wir alle, mich eingeschlossen, davon träumen eines Tages die HDDs komplett mit SSDs abzulösen ohne ein Vermögen dafür ausgeben zu müssen, auch die im NAS/Heimserver mit zweistelligen TB Kapazitäten, so sehe ich eben nicht, dass dies jemals der Fall sein wird.