Gigabyte GA-F2A85X-UP4
( Preisvergleich | Produktseite | PDF-Manual | Memory-QVL )
--- Gigabyte FM2 Microsite ---
--- Gigabyte Ultra Durable 5 Microsite ---
--- Gigabyte F2A85X-UP4 @ hwbot ---
--- Gigabyte Daily Tech Blog - OC Guide ---
Specifications
CPU | AMD FM2 APU A4, A6, A8, A10 Series AMD FM2 Athlon Series |
Chipset | AMD A85X |
Expansion Slots | 3x PCIe 2.0 x16 (at 16, 8+8, 8+8+4 Lanes) 3x PCIe 2.0 x1 1x PCI |
Graphics | 1) AMD APU Graphics Eyefinity, Triple Monitor Output - HDMI (1920x1200 @ 60Hz) - DisplayPort (2560x1600 @ 60Hz) - DVI (Dual Link, 2560x1600 @ 60Hz) 2) Multi Graphics Technology AMD Dual Graphics ATI CrossFireX Technology |
Memory | 4x DDR3-1066 / 1333 / 1600 / 1866 / 2133 (OC) Non-ECC U-DIMM Dual Channel Memory Architecture Support AMD Black Memory Profile (BEP), Intel Extreme Memory Profile (XMP) |
Audio | Realtek ALC892 HD-Audio Codec 2 / 4 / 5.1 / 7.1 Channel Support for S/PDIF In/Out |
Networking | 1x Realtek RTL8111F |
Storage Interface | South Bridge: 7x SATA 6Gb/s RAID 0/1/5/10, 1x eSATA 6Gb/s |
USB | Chipset: 4x USB 3.0 (2x back, 2x internal) Chipset: 10x USB 2.0 (2x back, 8x internal) Etron EJ168: 2x USB 3.0 (2x back) |
Internal I/O Connectors | 1x USB 3.0 4x USB 2.0 7x SATA 6Gb/s S/PDIF-Out COM-Header TPM-Header Frontpanel Audio (AAFP) Power-on button Reset button Fan: 1x CPU (4pin) 4x Chassis (4pin) Power Connector: 24-pin ATX 8-pin ATX 12V |
Back Panel Connectors | PS/2 keyboard/mouse combo DisplayPort DVI-D HDMI VGA LAN (RJ45) 4x USB 3.0 2x USB 2.0 eSATA 1x Optical S/PDIF out 6x Audio |
I/O Controller | ITE IT8728F |
H/W Monitoring | System voltage detection APU/System temperature detection APU/System fan speed detection APU overheating warning APU/System fan fail warning APU/System fan speed control |
BIOS | 2x 64Mb UEFI AMI BIOS 4.PnP 1.0a, DMI 2.0, SM BIOS 2.6, ACPI 2.0a Dual BIOS |
Unique Features | @BIOS Q-Flash Xpress Install EasyTune Smart Recovery 2 Auto Green ON/OFF Charge 3TB+ Unlock Q-Share |
Bundle Software | Norton Internet Security (OEM version) LucidLogix Virtu MVP |
Form Factor | ATX Form Factor; 30.5cm x 24.4cm |
Lieferumfang
- Mainboard
- User's manual
- Quick Installation Guide
- Driver Disc
- I/O Shield
- 6x SATA Cables
Schema
BIOS
1) Bilder |
2) Spannungen (ausgelesen mit BIOS F3k) Vcore: 0.8000v bis 2.3000v, in 0.00625v Schritten Dynamic Vcore (Offset): -0.80000v bis +0.79375v, in 0.00625v Schritten NB VID: 0.8000v bis 2.10000v, in 0.00625v Schritten Dynamic Vnb (Offset): -0.80000v bis +0.79375v, in 0.00625v Schritten DRAM: 1.100v bis 2.620v, in 0.01v Schritten DRAM Term.: 0.550v bis 0.895v, in 0.005v Schritten FCH: 1.000v bis 1.400v, in 0.01v Schritten APU PLL: 2.200v bis 2.800v, in 0.02v Schritten APU VDD: 1.000v bis 1.500v, in 0.01v Schritten CPU Loadline: Auto, Normal, Extreme, Medium, Low, Standard NB Loadline: Auto, Normal, Extreme, Medium, Low, Standard PWM Switch Rate: 350KHz (Standard) bis 1200KHz, in 50KHz Schritten |
3) BIOS Downloads: |
News & Reviews
Hardwareluxx News: Gigabyte F2A85X-UP4 abgelichtet |
International Reviews 00) HARDWARELUXX 01) techPowerUp 02) Vortez 03) Hitech Legion 04) TweakTown 05) AnandTech 06) Benchmark Reviews 07) Hardware Secrets 08) HARDOCP 09) Pure Overclock 10) eTeknix 11) Guru3d 12) KitGuru 13) PCTreiber (deutsch) 14) Legit Reviews 15) Xbit Labs 16) Overclockers Australia 17) PC Perspective |
Hardwareluxx CPU-Kühler & RAM-Kompatibilitätsliste
1) CPU-Kühler
|
2) RAM
Wer mir die Arbeit abnehmen möchte, kann seinen Eintrag gern direkt in diesem Format posten. Danke. |
Nützliche Links (im Forum & im WWW)
1) Hardwareluxx |
2) WWW (international) |
Mein "User Review"
Da ich ja ohnehin schon die Virgo Übersicht und den AMD APU Overclocking Thread pflege, hat es mich in den Fingern gejuckt, nun auch selbst mit zu mischen. Nach meinen guten Erfahrungen mit dem Gigabyte A75-UD4H, war die Wahl des Mainboards eigentlich klar - zumal ich von der Qualität und Leistung des neuen PowIRstage Voltage Regulation Module (wiki:VRM) absolut überzeugt bin. Bei den hier von mir hier im Thread getesteten Komponenten handelt es sich nicht um gesponsorte oder Presse Samples, sondern um Retail Hardware. Trotzdem möchte ich mich an dieser Stelle bei Gigabyte für die Unterstützung über die letzten Jahre bedanken (Zubehör-Service, Beta BIOSe, Support im deutschen Hersteller-Forum). Mein Schwerpunkt wird beim testen ganz klar, auf der Performance und dem Übertakten der einzelnen Aspekte der APU und des Speichers liegen. Wer jetzt also einen vollständigen Test im Stile unserer Hardwareluxx Reviews erwartet, den muss ich leider enttäuschen. Das überlasse ich unseren offiziellen Testern und die Vögelchen zwitschern bereits, dass da vielleicht schon etwas in Arbeit ist Wer Sonderwünsche hat und bestimmte Dinge getestet haben will, die man in einem normalen Review eher nicht wiederfindet, der kann sich damit gern hier im Thread melden. Die Top-Modelle im Vergleich Wie man sieht sind die A85X Spitzenmodelle näher zusammen gerückt, als noch zu FM1 Zeiten. Jedes Modell besitzt nun ein grafisches UEFI, vier Grafikausgänge und, mit Ausnahme des MSI, drei PEG inklusive CrossfireX Unterstützung mit 8+8 Lanes. Zu den Grafikausgängen ist noch anzumerken, dass Dual Link DVI endlich Einzug als Standard für die Plattform gefunden hat und die Eyefinity Implementierungen der Hersteller recht unterschiedlich ausgefallen sind. Bei einigen Herstellern ist Triple Monitoring nur bei Verwendung des VGA-Ausgangs möglich, was in Anbetracht der guten Adaptierbarkeit von DisplayPort zu VGA vielleicht etwas unglücklich ist. Auch hat man sich, wohl auf Grund der acht integrierten SATA Anschlüsse des Fusion Controller Hubs, bei allen Herstellern grundsätzlich gegen zusätzliche Storage Controller entschieden. Nur die Hälfte der Modelle besitzt überhaupt einen Add-On Controller, in Form einer USB 3.0 zwei Port Lösung (Gigabyte: Etron, ASUS & ASRock: ASMedia). Beim Sound heben sich die ASrock und Biostar Modelle, mit einem im Vergleich zum sonst verwendeten ALC892 höherwertigen Audio Codec in Form des ALC898 (PDF-Datenblatt), positiv ab. Das man neben dem FM2-A85XA-G65 ausgerechnet auch beim teuersten Mainboard im Vergleich, dem A85XT, auf eine Virtu MVP Lizenz verzichten muss, ist allerdings unverständlich. Zwar bietet das Sapphire Modell einige exklusive Features wie einen mSATA Steckplatz und Bluetooth, allerdings fällt es trotzdem schwer den Aufpreis gegenüber den Konkurrenz-Produkten zu rechtfertigen. Alle diese Modelle bieten spezielle Funktionen und Eigenschaften, die sie für Übertakter interessant machen sollen. Angefangen von Onboard Power, Reset und CMOS_CLR Knöpfen, über Spannungsmesspunkte (MSI) bis hin zu Debug-Segmentanzeigen, lässt sich immer eine gewisse Schnittmenge solcher Komfortfunktionen finden. Einige Modelle, wie das ASUS F2A85X-V Pro, haben zudem umfangreiche Automatiken, um nicht nur den CPU-Takt, sondern auch die iGPU und den Speicher zu übertakten. Wer nicht Module mit einem AMP (AMD Memory Profile), sondern einem XMP (Intel Extreme Memory Profile) verwenden will, findet bei den großen Herstellern entsprechende Funktionen zum aktivieren dieser Profile im UEFI. Der Erfolg kann dabei, abhängig von den im SPD hinterlegten Speichertimings, in der Praxis allerdings variieren, da diese in der Regel mehr oder weniger für Intel Plattformen optimiert wurden. Einig sind sich die Hersteller jedoch in den Punkt, dass wer Trinity übertakten will ein leistungsfähiges VRM braucht. Die Implementierungen sind sich bei der Anzahl der Phasen recht ähnlich, wobei in der Regel drei bis vier Powerpak Mosfets (mit Driver) pro Phase zum Einsatz kommen. Die Ausnahme bildet das Gigabyte F2A85X-UP4, welches ein deutlich moderneres auf PowIRstages basiertes VRM besitzt. Dies sind hochintegrierte Wandler mit integriertem Driver, vergleichbar mit einer neuen Generation von DrMOS. Obwohl das MSI FM2-A85XA-G65 als ein Military Class III - 4 Sterne Modell beworben wird, besitzt es leider keine DrMOS Wandler und auch nur ein paar Alibi Bulk Hi-C Caps am Sockel (schade!). Der direkte Vergleich zwischen dem Gigabyte F2A85X-UP4 und seinem FM1 Vorgänger, dem Gigabyte A75-UD4H, offenbart keine größeren Überraschungen. Während das UD4H noch einen zweiten USB 3.0 Header, Firewire und mit dem ALC889 den damaligen High End Audio Codec von Realtek besitzt, entscheidet das UP4 alle anderen Punkte für sich. Das ist teilweise, wie bei den zusätzlichen SATA Anschlüssen, der Triple Monitoring und Lucid Virtu MVP Unterstützung, jedoch auch den Plattform-Neuerungen geschuldet. Gigabyte selbst hingegen hat das F2A85X-UP4 mit dem aktuellen 3D BIOS getauftem grafischem UEFI, Onboard Power/Reset/CMOS_CLR Knöpfen, einer Debug Segmentanzeige und dem, bisher nur von Gigabyte Intel Spitzenmodellen wie dem Gigabyte Z77X-UP7 bekanntem, VRM mit PowIRstages und digitalem International Rectifier PWM Controller aufgewertet. Dabei besitzt jede einzelne Phase eine theoretische Belastbarkeit von bis zu 60A. Damit sollte das F2A85X-UP4 eigentlich bestens gerüstet sein, um in Overclocker Kreisen in die großen Fußstapfen des A75-UD4H, welches unter anderem auch einige Speichertaktweltrekorde aufgestellt hat, zu steigen. Vintage Gallery & Walkthrough Eine Verpackung ist schon auf dem ersten Blick ganz typisch Gigabyte. Zum Glück nicht größer als notwendig, aber geradezu gepflastert mit Informationen (und Marketing). Der Hinweis auf der Front, dass dieses Modell zum Betrieb mit einer Wasserkühlung entwickelt wurde, ist allerdings nicht mehr als eine "Empfehlung". Weder hat das Mainboard selbst entsprechende Anschlüsse, noch ist man auf Grund der sehr effizienten Bauteile und großzügigen Kühlkörper zwingend auf eine direkte aktive Kühlung des Mainboards angewiesen. Auf der Rückseite der Originalverpackung findet sich neben den Spezifikationen auch eine etwas ausführlichere Erklärung zum Aushänge-Schild der Ultra Durable 5 Plattform, den PowIRstages. Im Inneren finden sich die üblichen Verdächtigen: Handbuch, Treiber-CD, Schnelleinrichtunghilfe, ATX-Blende, der obligatorische Aufkleber und insgesamt sechs SATA Kabel. Da das F2A85X-UP4 über 7 interne SATA Anschlüsse verfügt, ist diese Beigabe sehr willkommen und mehr als angemessen. Da es such um das Top Modell für den Sockel handelt, wird man vom neuen schwarz-grau Look begrüßt. Nun sind also auch für die APU, die Zeiten des vertrauten Gigabyte blau und weiß Farbschemas vorbei. Das Layout wirkt relativ aufgeräumt und das Kühlkörperdesign ist wieder etwas schlichter geworden. Kompatibilitätsprobleme mit ausladenden Prozessorkühlern sollte es mit dem Kühlkörper der Spannungswandler keine geben. Bis auf den 4pin CPU_FAN Header befinden sich alle Anschlüsse gut erreichbar am Rand des Mainboards und sind gut sichtbar beschriftet. Die abgewinkelten SATA-Buchsen erlauben auch die Verwendung von einer sehr langen zwei oder auch drei Slot Grafikkarte im oberen PEG, ohne dadurch die Storage-Möglichkeiten zu beschneiden. Weiterhin kommen auf dem gesamten Mainboard Feststoff-Kondensatoren und Ferritkernspulen zum Einsatz. Wie man auf der Rückseite des Mainboards erkennen kann, ist zwar der Kühlkörper für den Chipsatz verschraubt, jedoch wird der für die Spannungswandler nur von zwei Push-Pins gehalten. Zwar neigt das neue Design nicht mehr so sehr zum kippen wie noch die relativ hohe Variante auf dem A75-UD4H, eine Verschraubung würde aber auch hier in jedem Fall bevorzugen. Auch an der Unterseite ist das Areal um den Sockel frei von Bauteilen. Einer Verwendung von Kühlern mit universellen Backplates sollte also nichts im Wege stehen. Gut zu sehen ist auch die elektrische Anbindung der drei PEG mit von oben nach unten 16, 8 und 4 PCIe-Lanes. Das Backpanel ist auch für ein Modell mit ganzen vier Grafikanschlüssen (VGA, DVI, HDMI, DisplayPort) sehr standardmäßig belegt. Auffällig sind der eSATA und die vier USB 3.0 Anschlüsse, wovon zwei durch einen Etron EJ168 und die anderen beiden von der AMD A85X bereitgestellt werden. Zu den sechs analogen Audio-Ausgängen gesellen sich ein optischer S/PDIF und eine kombinierte PS/2 Buchse. Leider war dadurch nur Platz für ein Paar USB 2.0 Buchsen, welche sich jedoch über die internen Anschlüsse und entsprechende Slotblenden um bis zu acht weitere ergänzen lassen. Gegen Vorlage des Kaufbeleges können diese bei Bedarf als Originalzubehör kostenlos direkt von Gigabyte Deutschland bezogen werden. Neben den vier internen USB 2.0 Buchsen finden sich am unteren Mainboard-Rand auch noch eine serielle Buchse und ein TPM (Trusted Plattform Module) Header. Die farblich in Rot abgesetzte F_USB1 unterstützt die On-Off Charge Technologie. Diese ermöglicht das schnellere Aufladen von Mobiltelefonen, Smartphones oder Tablets direkt am PC. Die Frontpanelanschlüsse sind zum Glück nicht komplett in schwarz gehalten, sondern durften ihre traditionelle Farbcodierung behalten. Damit sollte sich, in den meisten Fällen, die Suche nach der Pinbelegung im Handbuch erübrigen. Es ist auf den ersten Blick vielleicht nicht zu erkennen, aber AMD verwendet für den Sockel FM2 eine andere Anordnung der Blindpins als noch bei FM1. Daher sind die Architekturen untereinander nicht nur elektrisch, sondern auch physikalisch inkompatibel. Wieder Verwendung findet hingegen das mit der Vorgängerplattform eingeführte an der Vorderseite zweigeteilte Retention Modul. Vom damit beworbenen zusätzlichen Luftstrom für die Spannungswandler wird man sicherlich nur mit einem Boxed- oder vergleichbar aufgebauten Kühler profitieren. Das F2A85X-UP4 ist auf Grund der sehr hohen Effizienz seiner Wandler jedoch nicht unbedingt auf diesen Luftstrom angewiesen. Eine Ausnahme wäre die deutliche Anhebung der Frequenz des PWM Controllers, aber das ist ein Szenario für eine Bench-Session bei Minusgraden. Direkt am oberen Ende des Kühlkörpers für die Spannungswandler befindet sich die Buchse zur Versorgung des Prozessors. Wer ein Netzteil mit nur einem 12VP4 besitzt, kann die zweite Hälfte der EPS12V Buchse frei lassen (deren Verwendung ist optional). Die L-förmig um den Sockel angeordneten Bauteile gehören zum VRM der CPU, auf das ich später noch genauer eingehe. Die Speicherslots sind farblich in den beiden Hauptfarben des Mainboards für den Dual Channel Betrieb kodiert und sind im klassischen Design, mit Hebeln an beiden Seiten, gehalten. Wie im Handbuch vermerkt, sollten zuerst die beiden schwarzen Steckplätze bestückt werden. Als Nebeneffekt bleibt dadurch, bei Verwendung von nur zwei Modulen, auch mehr Platz für ausladende Prozessorkühler und hohe RAM-Heatspreader. Jeweils ober- und unterhalb der 24 polige ATX-Buchse zur Stromversorgung des Mainboards befinden sich die PWM-Lüfteranschluss SYS_FAN3 und SYS_FAN4. Ersterer lässt sich im UEFI als Gruppe mit SYS_FAN1 und SYS_FAN2 durch Profile (Normal, Silent) oder mit einer manuellen PWM-Slope regeln. Im zweiten Bild sieht man die Onboard Taster für den Systemstart, Reset und das Zurücksetzen des CMOS Inhalts (CMOS_CLR). Gerade letzterer ist relativ weit außen am Mainboard platziert und sollte sich auch in weniger geräumigen Gehäusen besser erreichen lassen, als die entsprechende Jumperbrücke und die Batterie. Gleichzeitig ist er, wie auch der RST_SW, glücklicherweise relativ flach und besitzt einen präzisen Druckpunkt. Der beleuchtete und deutlich höhere PWR_SW mag dagegen ungeschickten Naturen schon eher als Kandidat für eine versehentliche Betätigung erscheinen. Aber wollen wir den Teufel nicht an die Wand malen... Die auf den Bildern zu sehende Spannungsversorgung für Speicher und Chipsatz besteht jeweils aus einem Richtek RT8120D Single Phase PWM Controller mit zwei Renesas K03B7 Low RDS(on) Mosfets. Die gut sichtbar beschrifteten abgewinkelten SATA Buchsen können im BIOS in zwei Gruppen als AHCI, IDE oder RAID konfiguriert werden. Der siebte interne Anschluss befindet sich weiter unten aufrecht neben dem Frontpanel Header. Damit ist man zumindest allen Platzproblemen bei der Verwendung zweier langer Grafikkarten aus dem Weg gegangen. Zusätzlich gibt es die Möglichkeit für jeden einzelnen Anschluss im UEFI die Hot Plug Funktionalität zu aktivieren oder diesen sogar ganz zu deaktivieren (interessant). Die beiden 8MB BIOS Chips stammen von Macronix, sind vom Typ MX25L6408E (PDF-Datenblatt) und wie bei Gigabyte Mainboards üblich aufgelötet. Daneben befindet sich die Segmentanzeige für die Port 80h POST Codes, welche leider durch eine lange Grafikkarte, die mehrere Slots belegt, im zweiten PEG teilweise verdeckt wird. Dafür ist sie relativ informativ und beim übertakten im Grenzbereich eine echte Hilfe. Das Handbuch enthält allerdings nur einen Teil der möglichen Fehler-Codes. Der Kühlkörper auf dem Chipsatz besitzt zum Glück keine dieser in Mode gekommenen Abdeckungen und ist flach genug um problemlos unter lange Erweiterungskarten zu passen. Die Oberfläche ist zwar nicht überwältigend groß, für den A85X mit seiner Abwärme im einstelligen Watt-Bereich, aber auch bei nur minimaler Gehäusebelüftung ausreichend. Die komplett in schwarz gehaltenen Erweiterungssteckplätze sind ebenfalls in weiß beschriftet. Über die Anbindung der PCIe Lanes gibt das Handbuch Auskunft. So ist der obere PEG (PCIe 2.0 x16) voll angebunden und sollte für den Betrieb einer einzelnen Grafikkarte bevorzugt werden. Eine Hälfte seiner Anbindung teilt er sich mit dem zweiten PEG für 2-Way Crossfire mit 8+8 Lanes. Der unterste dritte PEG bekommt seine vier PCIe Lanes vom Chipsatz und kann somit unabhängig von den beiden anderen PEG genutzt werden. Jedoch teilt er sich die Anbindung mit einem der PCIe 2.0 x1 Steckplätze (PCIEX1_3) und ist daher, wenn beide Steckplätze genutzt werden nur einfach angebunden. Dies ist auf Grund der geringen Anzahl an PCIe Lanes der Plattform und durch die Ausstattung mit einem ebenfalls per PCIe angebundenen USB 3.0 Zusatzcontroller ein gelungener und relativ flexibler Kompromiss. Der einzelne PCI Steckplatz wird direkt vom A85X selbst bereit gestellt. Zwischen den beiden ersten PEG befindet sich neben den Pericom PCIe Gen 2.0 Switches vom Typ PI3PCIE 2415ZHE (PDF-Datenblatt) und der Batterie auch der vom A75-UD4H bekannte externe Taktgenerator ICS 9LRS4850AKL von IDT, welcher ab 136MHz Referenztakt (BCLK) verwendet wird. Der Super-I/O ist abermals der allseits beliebte ITE IT8728F, der neben der Spannungs- und Temperaturüberwachung, der Lüftersteuerung auch die einzelne serielle Schnittstelle und den PS/2 Anschluss bereit stellt. Die Bauteile oberhalb des Sockels besitzen zwar keinen Kühler, werden im Betrieb aber auch kaum mehr als handwarm. Wer jedoch die Switching Frequenz im UEFI drastisch anhebt, sollte die Temperatur des PWM Controllers - hier links im Bild 1, auf jeden Fall im Auge behalten. Der PCIe 1.1 Gigabit Ethernet Controller aus dem Hause Realtek, ist das aktuelle Brot und Wasser Modell RTL8111F. Dieser ist der Nachfolger des auf den meisten FM1 und auch einigen FM2 Modellen verwendeten RTL8111E und bietet einige neuere Funktionen wie EMAC-393 (PDF-Datasheet), IEEE 802.3az-2010 und den PHY Disable Mode. Leider gesellt sich dazu nicht der aktuelle High End Codec (ALC898) aus Realteks Sortiment, sondern "nur" der zugegebenermaßen sehr verbreitete Mittelklasse ALC892. Zwar gibt es funktionell keine größeren Unterschiede, jedoch besitzt der ALC892 leider einen im Vergleich etwas geringeren Rauschabstand (SNR) von nur 97dB für die analogen Ausgänge, während der größere Bruder hier mit 110dB aufwarten könnte. Da es sich beim Gigabyte F2A85X-UP4 um das Spitzenmodell für die Plattform handelt, hätte ich ganz klar den ALC898 als Codec bevorzugt. Das Voltage Regulation Module (VRM) Erstmals kommen bei einem AMD Modell Bauteile von Gigabytes fünfter Generation der Ultra Durable Reihe zum Einsatz. Dabei wurden gegenüber der vierten Auflage gleich mehrere Komponenten durch noch leistungsfähigere Alternativen ersetzt. So verwendet Gigabyte nun hochintegrierte Spannungswandler vom Typ IR3550, sogenannte PowIRstages (PDF-Datenblatt), des Herstellers International Rectifier (IR, Homepage). Diese zeichnen sich durch eine, selbst im Vergleich mit anderen integrierten Wandlern wie DrMOS, noch einmal verbesserte Effizienz von bis zu 95% im typischen Lastbereich und eine höhere Belastbarkeit von bis zu 60A aus. Eine einzelne PowIRstage besteht dabei aus speziell aufeinander abgestimmten Komponenten: ein Driver IC, ein High Side und zwei Low Side Mosfets, ergänzt durch zusätzliche Kupferlayer für eine bessere Wärmeabgabe. Gesteuert werden die einzelnen Phasen von einem PWM Controller des Typs IR3567A (PDF-Datenblatt) mit 6+2 Kanälen und einem umfangreichen Featureset, wie Unterstützung für AMDs SVI2, Intels VRD12/12.5 und Schutzmechanismen wie OVP, UVP, OCP, OTP, CFP. Gigabyte verwendet beim F2A85X-UP4 sechs Phasen (Grün) für die CPU-Kerne und die beiden anderen (Rot) für die CPU-NB. Dazu hat man auch die Switching Frequenz des Controllers manuell konfigurierbar implementiert und erlaubt eine Anhebung von 350kHz auf bis zu 1200kHz, was vor allem für Extrem-OC interessant ist. Eine visuelle Anzeige über die Anzahl der aktiven Phasen gibt es leider nicht. Für die APU VDD, zuständig für die externen I/O Verbindungen wie PCI Express und DMI, verzichtet man auf PowIRstages und verwendet wieder die Gigabyte typischen PowerPAK Low RDS(on) Mosfets, zwei Renesas K03B7 mit erneut einem Richtek RT8120D Single Phase PWM Controller (Gelb). Ergänzt werden die IR Komponenten durch Aluminium Polymer Kondensatoren aus Sanyos (Panasonic), auch für High End Grafikkarten sehr beliebten, OS-CON Reihe. Verwendet werden Modelle vom Typ SEPC, die sich durch eine extrem niedrige ESR und eine hohe Haltbarkeit mit einer MTBF von 5000h bei 105°C auszeichnen. Auch die Spulen wurden an die Leistungsfähigkeit der anderen Bauteile angepasst. Dabei handelt es sich um Ferritkern-Modelle mit einem auffälligem geprägten Logo und einer Belastbarkeit mit ebenfalls bis zu 60A. Sie werden laut einigen Reviews in dieser Form exklusiv für Gigabyte hergestellt und sind nur auf den Ultra Durable 5 Modellen zu finden. Das macht das VRM des Gigabyte F2A85X-UP4 zum leistungsfähigsten und gleichzeitig zu einem der effizientesten aller FM2 Mainboards. Software - AMD Overdrive v4.2.6 & Gigabyte EasyTune6 (B13.0314.1) Wie man schon auf den ersten Blick sieht, ist die Kompatibilität mit AMDs Overdrive relativ gering. Diverse Sensorwerte werden komplett falsch ausgelesen, andere schwanken in extremen Bereichen (im Screenshot leider nicht zu sehen). Grundsätzlich würde ich deshalb vom Nutzen der integrierten Übertaktungsfunktionen abraten. Man kann AOD aber nutzen, um einige Systeminformationen wie Speichertimings zu sammeln oder die einzelnen Kerntaktraten bei Last zu überwachen. EasyTune wird den meisten wohl schon von einigen ihrer anderen Gigabyte Mainboards bekannt sein. Dieses Tool gibt es in einer Intel und einer AMD Variante, dich sich im Funktionsumfang minimal unterscheiden. Die hier verwendete Version von Anfang 2013 unterstützt das Gigabyte F2A85X-UP4 zwar ganz offiziell, hat aber auch noch kleinere Schwächen. Zum Beispiel wird das XMP der Speichermodule oft falsch ausgelesen und die Quick Boost Funktion nutzt BCLK-OC, statt sich des freien Multiplikators der A10-5800K APU zu bedienen. Im Advanced Modus bietet der Tuner Tab, dann allerdings auch manuelle Einstellungen für Spannungen und Multiplikatoren. Abgerundet wird der Funktionsumfang durch die Möglichkeit die regelbaren Lüfteranschlüsse manuell mit Schwellentemperaturen und Geschwindigkeiten zu konfigurieren. Schade, dass es diese Funktionalität nicht auch im UEFI gibt! Mein Testsetup
Vergleichswerte - Part 1 1) AMD FM1 Plattform: AMD A8-3870K, Gigabyte A75-UD4H, 4GB G.Skill RipjawsX @ DDR3-1866 (OC:2200) 2) Intel LGA1366 Plattform: Intel Core i7-980X, Gigabyte X58A-OC, 6GB Kingston HyperX @ DDR3-1333 (OC: 1600) 3) Intel LGA1155 Plattform: Intel Core i5-3570K, ASUS Maximus V Extreme (Z77), 4GB RipjawsX @ DDR3-1600 CL9 4) Intel Pentium G2120 (simuliert): Intel Core i5-3570K @ 3.1Ghz (2c2t), sonst siehe 3) Benchmarks - synthetisch Bei keinem anderen Benchmark ist das Architektur-bedingte Nachteil für AMD so groß wie bei SuperPi. Die Ergebnisse fallen entsprechend sehr eindeutig aus. Untereinander liegen die beiden AMD APU Generationen zwar dicht beieinander, jedoch hat die ältere Architektur die Nase leicht vorn. Das Pentium Dual Core Modell wird vermutlich hauptsächlich durch den Taktvorsprung des A10-5800K geschlagen, die anderen Architekturen sind jedoch außer Reichweite. Zwar ziehen die Intel Modelle davon, allerdings weniger deutlich als in SuperPi selbst. Trinity kann sich gegen Llano, sowohl im Duell bei Standardtakt, als auch übertaktet, durchsetzen. Die Performance des A10-5800K liegt vermutlich auf dem Niveau eines Intel Core i3-2120 oder 3220. Das Core i5 und das i7 Modell behaupten ihren Vorsprung. Ein übertakteter A8-3870K erreicht aber selbst übertaktet nicht die Performance der Trinity APU bei Standardtakt. Im Aida64 PhotoWorxx Benchmark kann sich der AMD A10-5800K unabhängig vom Takt souverän gegen den A8-3870K (seinen direkten Vorgänger) behaupten. Jedoch fällt er trotz allem deutlich gegen die größeren Intel Core Modelle zurück und kann selbst den günstigeren Pentium G2120 nicht einholen. Ein Taktvorsprung von 1.7Ghz CPU-Takt reicht gerade so, um am A8-3870K bei seinem Standardtakt von nur 3.0GHz vorbeizuziehen. Zwar kann der A10-5800K das Pentium Modell knapp hinter sich lassen, aber die anderen Prozessoren bleiben auch unabhängig vom CPU-Takt außer Reichweite. Auch hier ist der A8-3870K in den synthetischen Tests seinem Nachfolger, trotz erheblicher Taktdifferenz zu dessen Gunsten, überlegen. Immerhin das Pentium Modell kann selbst bei Standardtakt distanziert werden. Vergleichswerte - Part 2 1) Intel Core i5-3570K, ASUS Maximus V Extreme (Z77), 2x4GB G.Skill TridentX @ DDR3-1600 CL9-9-9-24-1T 2) Intel Pentium G2020, Fujitsu D3161-B, 2x4GB G.Skill TridentX @ DDR3-1333 CL9-9-9-24-1T 3) Intel Celeron G550, Fujitsu D3161-B, 2x4GB G.Skill TridentX @ DDR3-1066 CL7-7-7-21-1T 4) alle Grafikkartenergebnisse: AMD A10-5800K (Default), Gigabyte F2A85X-UP4, 2x4GB G.Skill TridentX @ DDR3-1866 CL9-9-9-27-1T Der 3570K sieht hauptsächlich auf der Grund der hohen CPU-Wertung noch relativ gut aus, die kleineren Intel Modelle können hingegen nicht mit heutigen Einsteigergrafikkarten mithalten. Auch hier macht der Core i5 noch eine relativ gute Figur und liegt in Schlagdistanz zum A10-5800K. Der Celeron G550 enttäuscht und fällt sogar hinter die fast antike Radeon HD5450 mit langsamen DDR2 Grafikspeicher zurück. Mit dem Performance Preset beginnt sich der A10-5800K deutlich vom 3570K abzusetzen. Nun hat die APU bereits einen Vorsprung von fast 50%, während die restlichen Verhältnisse mehr oder weniger unverändert bleiben. Die Ergebnisse spiegeln in etwa die Werte aus 3DMark Vantage Extreme wieder, wobei Nvidia die Treiber für die GeForce GT520 offenbar stärker optimiert hat als für die beinahe baugleiche Quadro NVS 310. Der Celeron G550 muss mangels entsprechender Fähigkeiten und DirectX 11 Exklusivität des Benchmarks außen vor bleiben. Erstmals zeigt Dual Graphics keinerlei Skalierung über das Ergebnis der integrierten Grafik bei Standardeinstellungen. Eine Auszeit für den Celeron G550, es wird nicht die letzte bleiben. Der Performancegewinn durch Dual Graphics gegenüber einer übertakteten HD7660D ist sehr überschaubar. Ab dem Ergebnis des 3570K kann man von einer Spielbaren Bildrate reden. Richtig flüssig wird es aber erst mit der HD6570 bzw APU-Grafik mit DDR3-1866 Speichertakt. Der Celeron mit seinem DX10 Grafikkern muss außen vor bleiben. Es bietet sich das bekannte Bild, ohne irgendwelche Ausreißer. Schnell weiter mit etwas Anderem. Alle Versuche diesen Benchmark mit dem Pentium G2020 durchzuführen, inklusive einer kompletten Neuinstallation des Testrechners, endeten in einem Freeze des gesamten Systems mit anschließendem BSOD. Auffällig ist die überproportionale Skalierung des Dual Graphics Verbunds. Hat es AMD da vielleicht etwas zu gut gemeint, mit der Optimierung im Quellcode oder gibt es eine magische Performance-Schwelle? Ein Schelm, wer... Der G550 hat mangels DX11 Unterstützung mal wieder Pause. GPU Test konnte in der vorliegenden Version keinen Performancegewinn aus dem Dual Graphics Verbund ziehen. Das Ergebnis liegt auf dem Niveau der integrierten Grafik bei Standardeinstellungen mit DDR3-1866. Auffällig ist der große Abstand zwischen den APU Ergebnissen mit DDR3-1333 und DDR3-1600 (20% Differenz). OC-Ergebnisse Allgemeine Hinweise zum Thema Übertakten eines FM2 Systems, auch mit dem Gigabyte F2A85X-UP4, findet ihr im AMD APU OC Thread (LINK). Das Gigabyte hat als Besonderheit den Wechsel vom internen zum externen Taktgeber bei 136MHz BCLK. Dadurch kann der Referenztakt bei Standardeinstellungen etwas von den idealen 100MHz abweichen. Bei meinem Exemplar waren es in der Regel 99.8Mhz, mit nur geringfügigen Schwankungen. Die BCLK kann daher, obwohl das UEFI eine 1MHz Einteilung zulässt, bis 135MHz nur in relativ groben etwa 4MHz Schritten (aufgerundet) angehoben werden, weil der interne Taktgeber keine höhere Auflösung bzw Genauigkeit besitzt. Ähnlich sieht es bei dem Grafiktakt der APU aus. Zwar kann dieser im UEFI in 1MHz Schritten angehoben werden, weil jedoch ebenfalls aus einem Teiler generiert, sind in der Praxis nur bestimmte Frequenzen möglich. Das Gigabyte F2A85X-UP4 setzt automatisch den nächstkleineren oder nächstgrößeren möglichen Wert.
Fazit Insgesamt ist das Gigabyte F2A85X-UP4 ein rundum gelungenes Produkt mit wenigen kleinen Schwächen im Detail. Punkten kann es in jedem Fall mit der Ausstattung, dem Layout, den umfangreichen Übertaktungsmöglichkeiten, bei den effizienten Bauteilen und dadurch auch einem für ein Mainboard dieser Klasse sehr geringen Stromverbrauch. Angefangen mit der Ausstattung bekommt man bis mSATA und Thunderbolt eigentlich alles, was das Herz begehrt: drei PEG, 6x USB 3.0, 7x SATA 6Gb/s mit RAID Unterstützung, HDMI, DVI und DisplayPort. Im Vergleich zum direkten Vorgänger verzichtet man hauptsächlich auf Firewire und den zweiten internen USB 3.0 Header, erhält dafür aber den dritten PEG, das grafische UEFI und diverse Komfortmerkmale (nicht nur zum Übertakten). Thunderbolt sucht man auch bei der Konkurrenz vergebens und mSATA gibt es nur beim Sapphire A85XT. Das UEFI selbst ist, sobald man die poppige 3D Ansicht verlassen hat, sehr umfangreich und bietet einen mit den Intel Modellen vergleichbaren Funktionsumfang. Dazu gehören nun auch BIOS Profile, die sich sogar direkt auf USB-Flashspeichern sichern lassen und so selbst ein zurücksetzen des BIOS überleben. Einige Einstellungen sind allerdings Blender, wie die freie Wahl des Taktes der internen Grafik und die, im Bereich bis 136MHz von der Genauigkeit des internen Taktgebers der A85X FCH abhängige, in 1MHz Schritten konfigurierbare BCLK. Die generelle Kompatibilität mit Arbeitsspeichern scheint relativ gut zu sein, nur die Samsung MV-3V4G3D und ein Low Profile Kit basierend auf neueren Micron Chips haben sich, neben den üblichen Problemen mit Elpida Hyper Modulen, als inkompatibel erwiesen. Die für den Test verwendete F3k Beta-Version fiel zudem mit einer etwas zu geringen Standard-BCLK auf. Dies wurde allerdings bereits mit der vor Kurzem veröffentlichten F3 Final behoben. Die Plattform selbst ist durchaus ein Entwurf mit Licht und Schatten. So sind die Prozessoren selbst, mit ihren maximal zwei Modulen und vier Threads, kaum in der Lage sich bei der CPU-Leistung gegen ihre Llano Vorgänger und die Sandy- bzw. Ivy Bridge basierten Intel Celeron und Pentium Modelle zu behaupten. Daran ändert auch der im Vergleich teilweise deutlich höhere Takt pro Kern nichts, welcher zudem auf Kosten eines höheren Last-Strombedarfs erkauft wird. Andererseits gibt es noch keine anderen integrierten Grafiklösungen mit einer vergleichbaren 3D-Leistung und speziell die AM3+ Plattform hat im Moment gar keine aktuellen Chipsatzlösungen mehr zu bieten. Gegen Intel punktet AMD vor allem mit dem Ausstattung der A85X, welche mit 4x USB 3.0 und 8x SATA 6Gb/S RAID, selbst im Vergleich gegen die kommenden Lynx Point Chipsätze für LGA1150 noch immer gut aufgestellt ist. Sofern es auf 3D Leistung für ein kleines Budget ankommt, erhält mit dem Grafikkern eines der A8 oder A10 Trinity Modelle den Gegenwert einer passiven Radeon HD6570/6670. Die Alternative wäre ein Intel Pentium G2xx0 mit einer entsprechenden Grafikkarte. Allerdings gibt es für die Intel Plattform kein vergleichbar gut ausgestattetes Mainboard in dieser Preisklasse und die Möglichkeit zu übertakten darf man sich dann ebenfalls abschminken. Die Intel Lösung mag vernünftiger sein, ein Hardware-Enthusiast kann mit der AMD Variante aber deutlich mehr Spaß haben (( Pluspunkte ))
(( Minuspunkte ))
|
Danke für euer Interesse
Zuletzt bearbeitet: