Der Hausaufgaben Thread(2.2)

Status
Für weitere Antworten geschlossen.
Wenn Du diese Anzeige nicht sehen willst, registriere Dich und/oder logge Dich ein.
gibts auch einen lösungsweg? also ich meine gibt es da eine art schema oder muss man da scharf hinschauen? mich würde das schon ein wenig interssieren.
 
der beweis ist ein einzeiler, mich würde der weg zu der aussage eher interessieren. (induktionshypothese steht ja oben, nach dem induktionsschritt steht die summe von 0 bis n+1 dran, das n+1te glied aus der summe rausziehen ergibt
(n+1)(n+1)! + Sum das ist nach induktionsvorrasusetzung das gleiche wie (n+1)(n+1)! + (n+1)! -1 und das ist (n+2)(n+1)!-1, was zu zeigen war.

mich würde eher der weg dahin interessieren, aber egal.
 
Zuletzt bearbeitet:
Ich mag ja vieles, aber Physik liegt mir leider gar nicht.

Könnte mir da einer mal helfen :-c

15fng39.jpg
 
der beweis is eher ein halbseiter :d kein einzeiler

welcher weg dahin meinste?
 
Das kann man mit ein bisschen tüfteln schon herausbekommen. Wenn du dir die ersten Ergebnisse aufschreibst (1, 5, 23, 119, 719, ...), dann sieht man ja schon ungefähr, dass wenn man n um eins erhöht (z.b. von n=2 nach 3) sich das Ergebnis ca. vervierfacht, von n=3 nach n=4 ist der Faktor dann ~5, also jeweils ungefähr das n+1-fache. Und das -1 am Ende findet man dann, wenn man ganz genau nachrechnet.
Ich mag ja vieles, aber Physik liegt mir leider gar nicht.

Könnte mir da einer mal helfen :-c

http://i33.tinypic.com/15fng39.jpg[./IMG][/QUOTE]

Bei der 1) must du doch nur die gegeben Geschwindigkeiten als v_0 einsetzen, und dann für die entsprechenden Zeiten die Zahlenwerte ausrechnen.

Bei der 2) nimmst du dir Formel für s_{ges}, formst sie nach t um und setzt dann die Zahlen ein.
 
Zuletzt bearbeitet:
der beweis is eher ein halbseiter :d kein einzeiler

welcher weg dahin meinste?

du hast schon begriffen dass ich die aussage in meinem post oben in einer zeile bewiesen habe, oder? es lässt sich ohne formeleditor halt nicht so richtig hinschreiben, aber egal.

@warrior
ja, klar geht es mit werten anschauen und ne formel konstruieren, zumindest bei manchen sachen kommt man drauf. aber ich habe zum beispiel mal - und das fand ich halt beeindruckend - gesehen wie man zb solche sachen ausrechnen kann:
x_0 = 1
x_1 = 1/3
x_n+1 = (10/3)x_n - x_n-1
nach ein wenig rechnerei, die nichtmal kompliziert ist, kommt raus dass es dass gleiche ist wie
(1/3)^n
wenn du willst versuch ich die rechnung nochmal hinzubekommen (es ist ne weile her) und mach n bild. ich fand das damals halt schon cool irgendwie und dachte dass es auch hier so geht, auch wenn keine rekursion dabei ist.
 
Zuletzt bearbeitet:
es gibt oft für die selbe sache viele verschiedene beweise, manche sind halt kurz und dafür setzen sie einiges vorraus, andere sind eher kleine nachvollziehbare schritte und dafür ellenlang und viele sind einfach nur krank weil man gar nicht kapiert was der beweis mit dem problem zu tun hat. am besten sind die konstruktiven beweise, die kann man wenigstens benützen um später damit zu rechnen.
 
was is der unterschied zwischen rudimentären erscheinungen und atavismen??
 
Als 15 Piraten ein Schiff kaperten, erbeuteten sie eine Anzahl
Goldmünzen. Nach gleichmäßigem Aufteilen blieben 7 Goldmünzen übrig.
Bei einem Streit ging ein Pirat über Bord. Nun blieben nach dem Aufteilen
noch 8 Münzen übrig. Wieder flog ein Pirat bei einem Streit über Bord und
die Goldmünzen ließen sich nun gleichmäßig aufteilen.

Bestimmen Sie mithilfe
des chinesischen Restsatzes, wie viele Goldmünzen die Piraten erbeutet
hatten.


oO
HELP!
 
wo hast du denn probleme? steht doch alles bei wiki. bzw kann man die links unten benützen wenn man onlinetools braucht um den erweiterten euklidischen algorithmus (den ich auch nicht kannte) anwenden zu können. ich hab keine ahnung vom chinesischen restsatz und habe die aufgabe gerade in weniger als 5 minuten gelöst.
 
Zuletzt bearbeitet:
wo hast du denn probleme? steht doch alles bei wiki. bzw kann man die links unten benützen wenn man onlinetools braucht um den erweiterten euklidischen algorithmus (den ich auch nicht kannte) anwenden zu können. ich hab keine ahnung vom chinesischen restsatz und habe die aufgabe gerade in weniger als 5 minuten gelöst.

dann kannste mir ja die lösung geben :)?
 
Mal ne kleine Java-Frage an euch:
Wenn der Header meiner Main Methode so aussieht:
public static void main(String[] args) {
Und ich per Eclipse (run as) die Argumente "10 10" eingebe, werden diese ja über den String in die Main Methode implementiert. Wie kann ich beide Werte in eine jeweils andere Integer Variable casten??

mfg & tia
 
Hallo, ich muss in Mathe x^3=7x-6

gleichsetzten, das heißt ich brauche die schnittstellen,kann mir bitte eben einer schnell helfen?
bin nur soweit gekommen x(-x^2+7)-6=0...
 
Oder eine Nullstelle "raten" (x=1 sieht man ja schon vor der ersten Umformung), dann Polynomdivision, und die resultierende Gleichung per pq-Formel lösen.
 
Mitternachtsformel und GTR kenne ich nicht ;) das andere könnte mir weiterhelfen, das mit dem raten ist mir dann auch aufgefallen...
danke ;)
 
Mal ne kleine Java-Frage an euch:
Wenn der Header meiner Main Methode so aussieht:

Und ich per Eclipse (run as) die Argumente "10 10" eingebe, werden diese ja über den String in die Main Methode implementiert. Wie kann ich beide Werte in eine jeweils andere Integer Variable casten??

mfg & tia
ich würd mal sagen
int eins = parseInt(args[0]);
int eins = parseInt(args[1]);
aber ich hab im moment keine ide installiert und im kopf macht man es sich doch oft zu einfach. aber probiers halt mal so.

^^die mitternachtsformel ist auch nur für quadratische gleichungen gedacht. also war der tipp schon nicht ganz geglückt. nachdem du aber die mitternachstformel schon nicht kennst denke ich einfach mal das du mit dme hornerschema auch nciht vertraut bist. das wäre hier nämlich optimal, da du eine lösung ganz leicht ablesen kannst.
 
Zuletzt bearbeitet:
zwischendurch mal was einfacheres, steh aber grad aufm schlauch... :fresse:

Ausklammern in Teilsummen..

20r²s + 4rs² - 5r - s

-21ef - 56eg + 6fg + 16g²

wie muss ich da vorgehen?
 
Wie Sinnfrei ist Ausklammern da denn bitte?!

r²s² (20/s + 4/r - 5/rs² - 1/r²s) [oder z.B.] s(20r²-1) + r(4s²-5) ..alles murks ^^
 
Zuletzt bearbeitet:
Hallo zusammen!
Ich bräuchte auch mal Hilfe bei den Hausaufgaben und zwar in Mathematik!
Wir sollen bei einem Grafen mit der Funktion f(x)= x²:50 an einem beliebigen Punkt die Steigung bestimmen können (und zwar nicht näherungsweise!). Der Punkt P den wir als Beispiel genommen hatten, hatte die Koordinaten P (13/3.38). Nun sollen wir eine allgemeine Formel aufstellen, leider krieg ichs nicht hin...
Jemand ne Idee?
 
Mit der ersten Ableitung: f'(x) = 1/25*x

Somit erhälst du für f'(13)=0,52
 
Eine kleine Frage an euch:

Eine Kugel von 1,5cm Durchmesser fällt im freien Fall durch eine Lichtschranke; eine Uhr misst eine Dunkelzeit 0,003s. Wie lange war die Kugel bis zur Lichtschranke unterwegs, welche Fallstrecke hat sie bis dahin zurückgelegt?

Hoffe ihr könnt mir helfen, komme irgendwie nicht auf die Lösung...
 
Status
Für weitere Antworten geschlossen.
Hardwareluxx setzt keine externen Werbe- und Tracking-Cookies ein. Auf unserer Webseite finden Sie nur noch Cookies nach berechtigtem Interesse (Art. 6 Abs. 1 Satz 1 lit. f DSGVO) oder eigene funktionelle Cookies. Durch die Nutzung unserer Webseite erklären Sie sich damit einverstanden, dass wir diese Cookies setzen. Mehr Informationen und Möglichkeiten zur Einstellung unserer Cookies finden Sie in unserer Datenschutzerklärung.


Zurück
Oben Unten refresh