Das Problem was man mit Y-Cruncher mitunter hat, falls man AVX Befehle nicht irgendwie deaktiviert hat ist unter Umständen der folgende Fehler "Redundancy Check Failed: Coefficient is too large."
Bedeutet nämlich nicht zwangsläufig das der RAM nicht stabil ist sondern in den meisten Fällen eine nicht stabile CPU bzgl AVX /AVX 512, schreiben die auch in deren FAQ.
Deshalb mag ich Y-Cruncher eigtl. nicht so besonders.
Zitat:
My computer is completely stable. But I keep getting errors such as, "Redundancy Check Failed: Coefficient is too large."
The notorious "Coefficient is too large" error is a common error that can be caused by many things. A full technical explanation is here.
Because of the nature of error, it can be caused by literally anything. But below are the two most common causes.
The hardware is not "AVX stable" or "AVX512 stable":
If your "stable" overclock is hitting the "Coefficient is too large" error on the standard benchmark sizes, then your overclock is not as stable as you think it is.
This error is most commonly seen on overclocks with an unstable AVX or AVX512 configuration. It first became common on Haswell, but is now seen on nearly all Intel processors - especially those with AVX512.
y-cruncher makes heavy use of AVX and AVX512 instructions if the processor supports them. So in order to successfully run a y-cruncher benchmark, your system needs to be stable with these heavier workloads. The problem is that the vast majority of programs don't use AVX. So many "rock-stable" overclocks are actually not stable when running AVX. To make matters worse, most of the early BIOS versions for Skylake X improperly implemented the AVX/AVX512 offsets - thus causing systems to be unstable even at stock settings!
If you search around overclocking forums, you'll find that there are numerous complaints about Prime95 and other AVX workloads being "unrealistic". And for that reason, many overclockers will skip these stress-tests. While this allows for significantly higher overclocks, it sacrifices stability for AVX-optimized applications. So it's common for overclocked systems to be perfectly stable for months, and then immediately crash and burn when attempting to run Prime95 or y-cruncher.
If you fall into this category, lower your overclock. Recent processors (since Kaby Lake) have AVX and AVX512 "offsets" which will automatically downclock the CPU under those respective workloads. Use them! They will let you keep your very high non-AVX overclock without sacrificing stability for AVX and AVX512 workloads.
While y-cruncher isn't quite as stressful as latest Prime95, the workload is very similar. So if you cannot pass Prime95 small FFTs (with AVX) for at least a few seconds, you stand no chance of running any large benchmark or computation with y-cruncher.
AMD processors (up through Zen+) don't have this problem since they don't have native AVX hardware anyway. This may change with Zen 2.